SAMAD Aerospace proposes high-speed, long-range, hybrid VTOL jetplanes

Some 50 miles outside London, roughly in between Cambridge and Oxford, lies a decent-sized town called Milton Keynes. A couple of miles outside Milton Keynes sits Cranfield Airport, originally built in World War 2. It’s got a couple of runways, one that’s big enough to land a 757-sized airliner on, but since it doesn’t have the kind of terminals to process that volume of people, it’s chiefly used for business and private flights and the odd bit of R&D.

Opposite the airport lies the Cranfield University Technology Park, and in that little district you’ll find Conway House, a multi-occupier building providing offices, virtual offices and hotdesking services for startups. One of these startups is Samad Aerospace, which is planning a series of electric and hybrid VTOL air vehicles for the upcoming air mobility revolution.

CEO and Founder Dr. Seyed Mohseni has spent the last 10 years building a clean tech startup across the other side of town called Samad Power, which has brought in a few million pounds’ worth of grant money to help with the development and build of miniature gas turbines for heat and power generation. His passion and educational background, however, are in aerospace engineering and aerospace propulsion, with an MBA and a doctorate in gas turbine technology to boot.

The E-Starling is a more typical eVTOL running an all-electric powertrain – it claims a huge 400-mile range, though, and Samad doesn’t explain how it plans to fly so much further than its battery-powered competition
Samad Aerospace
Samad Aerospace is an effort to bring Dr. Mohseni’s two main areas of interest together. The startup has been around since 2018, and it came out of the blocks promising an “electric VTOL business jet that has the range of 1,500 miles (2,414 km),” with a top speed of 450 mph (724 km/h), five seats and room for luggage. How can it offer such an enormous range? By using a gas turbine generator acting as a range extender.

That device, the “Starling Jet,” now appears on the company website as a 10-seater, with a smaller seven-seat sibling called the e-Starling offering 400 mi (644 km) of range from a purely electric powertrain. That’s far more than any of the seriously cashed-up companies in our eVTOL market roundup say they can do with a battery, and we’d be interested to know how they reckon they can achieve it.

And now, Samad has released plans for another hybrid VTOL aircraft, the Q-Starling, targeted at an “executive private owner market.” The Q-Starling, says Samad, is “a jump-jet for the jet-set; a Maserati for the 3rd dimension; it is performance dressed in a sharp Italian suit,” and “a clever mix of fighter jet and VTOL, allowing you to fly from a tennis court or superyacht helipad to an event 500 miles away in under three hours.”

Long-range flights up to 500 miles are possible thanks to turbojet motors that also act as generators to charge up the aircraft’s batteries
Samad Aerospace
In its form factor, the Q-Starling is a reasonably traditional-looking airplane, but retractable covers on the side and tail wings open up to reveal a set of electric “reaction control system” fans, allowing the thing to balance itself like a quadcopter in a hover. The main wing’s rotors are out nice and wide, but the tail wing’s rotors are right at the base of the wing, so we’re curious as to whether they offer a ton of control authority.

The main thrust for that hover is provided by a large central fan, which itself is exposed when the underside of the fuselage opens up. One hopes the top opens up as well, so some air can come through for that big fan to push.

Power is provided by a pair of modified 180-kilowatt (241-hp) PBS TS100 turboshaft engines, typically used to power small helicopters. The modifications appear to include the removal of the gearbox and exhaust splitter, and the TS100s will be repurposed from spinning helicopter rotor shafts to spinning a generator to charge up the electric VTOL system batteries.

The Q-Starling design features a number of thruster fans concealed behind little doors in the fuselage and wings – one main fan for lift, four stabilizers for balance
“The turbo-generator then becomes a turbo-jet in conventional flight,” says Samad, and this jet propulsion will allow the Q-Starling to reach max speeds as high as 360 mph (580 km/h). It won’t need a huge battery, since those turbo-generators will do a lot of the heavy lifting in the VTOL phase of flight and the battery will really just need to hold the thing up and steady while the jets kick in and give the thing enough forward speed to fly on the wing and turn all the fans off.

The range and top speed benefits of moving to a turbine-powered system running biodiesel or sustainable aviation fuel are clear. But equally clear is that this will be a terrifically noisy machine when those things are running. Part of the battery-electric and hydrogen-electric eVTOL promise is that they will be much, much quieter than helicopters, which will eventually allow them to operate in urban areas at much lower levels of noise pollution than a turbine-driven helicopter. The Q-Starling will definitely wake up the neighbors, and thus it’ll likely be excluded from some vertiports in this future, which we’d admit is a theoretical one anyway.

Samad says a regular Private Pilot’s License should be enough to fly this thing, with a short modification course focused on the VTOL and transition flight phases. It is said to utilize a fly-by-wire flight control system, and the VTOL fans will become active anywhere slower than a little above stall speed. Glass panels in the lower part of the cabin are designed to give pilots a decent look at what they’re lowering down towards.

Samad’s aircraft will have glazed viewports in the floor of the cabin so pilots can see where they’re landing in the vertical landing phase of flight
The body will be built in carbon fiber, and Samad claims the wings will be “sized to perform semi-aerobatic maneuvers and will also house the main fuel tanks.” There will be a ballistic ‘chute in case of total failure during the VTOL phase of flight, but as we’ve pointed out many times, these ‘chutes can only make a difference if your total failure happens at about 120 ft (37 m) or higher.

Samad has assembled a small team and flown several small-to-medium scale demonstrator prototypes as part of the E-Starling program, which you can see at around the 2:02 mark in the video below.

https://www.youtube.com/embed/QOJO2SXO-Hw?enablejsapi=1e-

News Source: New Atlas

Kevalya Sheth
AIRCRAFT DESIGN ENGINEER

Kevalya is an innovative aerospace engineer passionate about unmanned aerial systems, and sustainable civil aviation. He holds a Master’s in Aerospace Vehicle Design from Cranfield University and a Bachelor’s in Aerospace Engineering from Embry-Riddle Aeronautical University, where he gained experience in UAV design and aerodynamic analysis. Kevalya has over two years of experience at NewSpace Research and Technologies (Bengaluru, India), contributing to UAV design, testing, and AI integration for swarm drone operations. He played a key role in the first tandem wing UAV in India. With experience in aircraft design, structural analysis, aerodynamics, and flight testing, Kevalya brings valuable skills in cutting-edge aerospace projects involving unmanned systems and sustainable aviation.